NMath

Biblioteca matemática .NET

Funciona con todos los lenguajes .NET, incluidos C#, Visual Basic y F#.

La biblioteca de matemáticas NMath .NET contiene clases fundamentales para los números orientados a objetos en la plataforma .NET.

Principais features

Cálculo Numérico
Análise Estatística
Otimização Matemática
Processamento de Sinais
Algoritmos de Aprendizado de Máquina

Descripción completa

Solicitar presupuesto

Resumen de características de NMath

Matemáticas básicas

  • Clases de números complejos de simple y doble precisión.
  • Generadores de números aleatorios para varias distribuciones de probabilidad, secuencias independientes de números aleatorios que utilizan métodos skip-ahead y jumpfrog, y secuencias casi aleatorias que utilizan métodos Niederreiter y Sobol.
  • Transformadas rápidas de Fourier (FFT), Wavelets y convolución y correlación lineal.
  • Funciones especiales como factorial, binomial, la función gamma y funciones relacionadas, funciones de Bessel, integrales elípticas y más.

Álgebra lineal

  • Arreglos completos y clases de vectores para cuatro tipos de datos: números de punto flotante de precisión simple y doble y números complejos de precisión simple y doble.
  • Indexación flexible mediante cortes y rangos.
  • Operadores aritméticos sobrecargados con sus significados convencionales para los lenguajes .NET que los admiten, y métodos con nombre equivalentes ( , , etc.) para aquellos que no los admiten.
  • Clases de matrices dispersas estructuradas con todas las funciones, que incluyen triangular, simétrica, hermítica, con bandas, tridiagonal, simétrica con bandas y hermítica con bandas.
  • Funciones para convertir entre matrices generales y tipos de matrices dispersas estructuradas.
  • Funciones para transponer matrices dispersas estructuradas, calcular productos internos y calcular normas de matriz.
  • Clases para factorizar matrices dispersas estructuradas, incluida la factorización LU para matrices con bandas y tridiagonales, factorización de Bunch-Kaufman para matrices simétricas y hermitianas, y descomposición de Cholesky para matrices definidas positivas simétricas y hermitianas. Una vez construidas, las factorizaciones de matrices se pueden usar para resolver sistemas lineales y calcular determinantes, inversos y números de condición.
  • Clases generales de vectores y matrices dispersas y factorizaciones de matrices.
  • Clases de descomposición ortogonal para matrices generales, incluida la descomposición QR y la descomposición en valores singulares (SVD).
  • Clases avanzadas de factorización de mínimos cuadrados para matrices generales, incluidas Cholesky, QR y SVD.
  • Factorización LU para matrices generales, así como funciones para resolver sistemas lineales, calcular determinantes, inversas y números de condición.
  • Clases para resolver problemas de valores propios simétricos, hermitianos y no simétricos.
  • Extensión de funciones matemáticas estándar como Cos(), Sqrt() y Exp() para trabajar con vectores, matrices y clases de números complejos.

Funciones

  • Clases para encapsulación de funciones de una variable, con soporte para integración numérica (métodos de Romberg y Gauss-Kronrod), diferenciación (método de Ridders) y manipulación algebraica de funciones.
  • Encapsulación de polinomios, interpolación y diferenciación e integración exactas.
  • Clases para minimizar funciones univariadas utilizando la búsqueda de la sección dorada y el método de Brent.
  • Clases para minimizar funciones multivariadas utilizando el método simplex downhill, el método de conjunto de dirección de Powell, el método de gradiente conjugado y el método métrico variable (o cuasi-Newton).
  • Recocido simulado.
  • Programación Lineal (LP), Programación No Lineal (NLP) y Programación Cuadrática (QP) utilizando Microsoft Solver Foundation.
  • Ajuste de mínimos cuadrados de polinomios.
  • Minimización de mínimos cuadrados no lineales, ajuste de curvas y ajuste de superficies.
  • Clases para encontrar raíces de funciones univariadas utilizando el método de la secante, el método de Ridders y el método de Newton-Raphson.
  • Métodos numéricos de doble integración de funciones de dos variables.
  • Minimización de mínimos cuadrados no lineales utilizando el método Trust-Region, una variante del método Levenberg-Marquardt.
  • Ajuste de curvas y superficies por mínimos cuadrados no lineales.
  • Clases para resolver ecuaciones diferenciales de primer orden utilizando el método de Runge-Kutta.

Integración con bibliotecas estándar .NET

  • Clases de datos totalmente persistentes que utilizan mecanismos .NET estándar.
  • Integración con ADO.NET.
  • Trazado usando Microsoft Chart Controls para .NET.

Solicitar presupuesto

Al hacer clic en "Enviar", usted acepta permitir que Software.com.br se comunique con usted utilizando la información proporcionada, con el fin de enviar cotizaciones y comunicaciones relacionadas con su pedido. Para obtener más detalles sobre cómo protegemos y usamos sus datos, consulte nuestra Política de privacidad y Términos de uso

Productos relacionados

Pipe Flow Expert es una aplicación de software basada en Windows que se utiliza para diseñar, documentar y resolver redes de tuberías.

Pipe Flow Expert es un programa de software galardonado para el diseño y modelado de sistemas de tuberías. Calcula el flujo de fluido en redes de tuberías de circuito abierto o cerrado con múltiples tanques de suministro y descarga, múltiples bombas en serie o en paralelo y varios tamaños de tuberías y accesorios. 

Pipe Flow Expert calculará el caudal en cada tubería y la caída de presión de la tubería en todo el sistema. Ayuda a los ingenieros de tuberías a analizar y resolver una amplia gama de problemas en los que se debe determinar el flujo y la caída de presión a lo largo de una red de tuberías.


Las técnicas de optimización utilizadas por Artelys Knitro ofrecen la combinación líder de eficiencia computacional y robustez. Artelys Knitro es el único solucionador no lineal con siete algoritmos diferentes, lo que le permite resolver una amplia gama de problemas no lineales complejos. ¡Y deja que Artelys Knitro sea tu ventaja competitiva! Piensa un paso adelante ¿Quieres saber más sobre las aplicaciones de Artelys Knitro? Consulte nuestros casos de uso

   Nuevas características de Artelys Knitro 13.2

■Refinamiento previo a la resolución, incluido el ajuste de límites y la selección de restricciones redundantes

■ Estrategia mejorada de generación y selección de cortes

■Nuevas estrategias automáticas para la selección de cortes

■ Mejora del rendimiento en Apple Silicon

■ Heurísticas de inicio múltiple mejoradas para problemas de enteros mixtos no convexos

■ Mejora general del rendimiento y la solidez de las funciones principales de NLP y MINLP

■Solución eficiente y robusta para problemas de gran escala

■Dos algoritmos de punto interior/barrera y dos algoritmos de conjunto activo/SQP

■Tres algoritmos para la optimización de enteros mixtos no lineales

■Heurística, planos de corte, reglas de bifurcación para MINLP

■ Función de inicio múltiple paralelo para optimización global

■Capacidad para ejecutar múltiples algoritmos simultáneamente

■Ajuste automático y paralelo de la configuración de opciones

■Cálculo automático de derivadas aproximadas de primer y segundo orden.

■Estrategias de inicio inteligentes y detección rápida de inviabilidad


Al hacer clic en "Enviar", usted acepta permitir que Software.com.br se comunique con usted utilizando la información proporcionada, con el fin de enviar cotizaciones y comunicaciones relacionadas con su pedido. Para obtener más detalles sobre cómo protegemos y usamos sus datos, consulte nuestra Política de privacidad y Términos de uso